شيريهان المصرية للشحن


التميز خلال 24 ساعة

 العضو الأكثر نشاطاً هذا اليوم   الموضوع النشط هذا اليوم   المشرف المميز لهذا اليوم 
asfaroat ذكر كوكتيل حبشي شغال للبيع
بقلم : ايزابيل
قريبا


صفحة 6 من 13 الأولىالأولى ... 45678 ... الأخيرةالأخيرة
النتائج 51 إلى 60 من 127

الموضوع: سلسلة ثقافية متنوعة - معارف وتطبيقات فيزيائية

  1. [51]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    المقياس الجلفاني




    المقياس الجلفاني أداة حساسة تستخدم بشكل رئيسي للكشف عن التيارات الكهربائية الصغيرة، وقياسها. وتعمل معظم هذه المقاييس على أساس المبدأ الذي يقول بأن التيار الكهربائي المار عبر الأسلاك مع وجود حقل مغنطيسي ينتج قوة على السلك.

    وللمقياس الجلفاني النموذجي تدريج يكون الصفر في مركزه، وفواصل رقمية منتظمة على كلا الجانبين. وله مؤشر كالإبرة أو شعاع من الضوء. ويبقى المؤشر على الصفر، ما لم يمر خلاله تيار كهربائي. ويجعل التيار في اتجاه واحد المؤشر يتحرك إلى جانب من نقطة الصفر. وكلما قوي التيار يتحرك المؤشر على التدريج إلى مدى أبعد. وعندما يُعيَّر الميزان بوحدات تيار مقننة كالأمبير أو الملي أمبير، فإن الآلة تدعى أميتر أو ملي أميتر (مقياس قوة التيار الكهربائي بالأمبير أو الملي أمبير).
    وأكثر مقاييس الجلفنة المستخدمة شيوعًا هو مقياس دارسنفال الجلفاني. وتستخدم هذه الآلة ملفًا من أسلاك دقيقة معلقة بين قطبي مغنطيس دائم. ويمر التيار عبر سلك فلزي صغير متصل بأعلى الملف، ويخرج عبر سلك شبيه باللولب متصل بأسفل الملف. وبدون مرور التيار، فإن السلك الشبيه باللولب يبقي على الملف في موضع الصفر. وعندما يتم إدخال التيار ينشأ مجال مغنطيسي في الملف. ويتعامل هذا المجال مع المجال المغنطيسي الدائم، جاعلاً الملف يدور. وفي بعض مقاييس دارسنفال الجلفانية توجد إبرة دقيقة متصلة بالملف المتحرك لتعمل كمؤشر. وفي بعض المقاييس الأخرى توجد مرآة صغيرة متصلة بالملف، وبالتالي فإن المرآة تعكس شعاع الضوء الذي يتحرك مبتعدًا عن التدريج.

    بحث الفيزيائي والكيميائي الدنماركي هانزكريستيان أورستد، تأثير التيارات الكهربائية على الإبر المغنطيسية عام 1820م. وفي عام 1820م أيضًا، صمم الفيزيائي الألماني جون سالومو كريستوفر شويقر، أول مقياس جلفاني بسيط. وفي عام 1882م، حقق عالم وظائف الأعضاء الفرنسي جاك أرسين دارسنفال، تحسينًا متميزًا في أداء المقياس الجلفاني. وسُميت باسمه أكثر أنواع المقاييس الجلفانية شيوعًا.




    مقياس فرق الجهد




    مِقْيَاسُ فَرْقِ الجُهْدِ جهازٌ يقيس التَّيار الكهربائي والفولتية (فرق الجهد) والمقاومة بدقة. ويبيِّن تدنِّي الفولتية أو الاختلافات في الجهد الكهربائي بمقارنة قوة دافعة كهربائية غير معلومة بقوة معلومة. ويُستخدم لتقويم مقياس الفولت أو الأميتر (مقياس شدة التيار الكهربائي).




    الفولت، مقياس




    الفولت، مقياس. مقياس الفولت أداة لقياس الفولتية (الفرق في الجهد) بين نقطتي تيار كهربائي. ومعظم مقاييس الفولت التجارية مقاييس جلفانية (جلفانومترات) موصلة بمقاومة عالية وبها تدريج يقرأ بالفولت. ومقياس الفولت ذو التيار المباشر به مغنطيس على شكل حذوة حصان. ويلحق بكل قطب (طرف) من قطبي المغنطيس قطعة حديد رخو شبه دائرية ممغنطة أيضًا. وهذه القطعة من الحديد الرخو (قليل الصلابة نسبياً) توجه الحقل المغنطيسي تجاه أسطوانة حديدية صغيرة موضوعة بين قطبي المغنطيس. ولأن الحديد الرخو يكون ممغنطاً بدرجة عالية، فإن هذه الأسطوانة تعمل على تركيز الحقل المغنطيسي.

    ويحيط بالأسطوانة ملف من سلك نحاسي رقيق ملفوف على إطار مستطيل خفيف. وهذا الملف قابل للحركة ويتدفق من خلاله التيار الكهربائي. وكل طرف من ملف السلك موصل إلى زنبرك. وعند تحرك الملف، تتحرك إبرة ملحقة بالملف أيضاً، عبر قرص مدرج مشيرة إلى القراءة بالفولتات. وهناك ملف آخر ذو مقاومة عالية جداً، تصل إلى عدة آلاف أوم، موصول بالملف المتحرك.

    وحين يكون مقياس الفولت قيد الاستخدام، لايتحرك الإطار وتقرأ الإبرة صفرًا. وعندما يمر تيار من خلال الملف المتحرك، ينشأ حقل مغنطيسي حول الملف. ونتيجة لذلك يعمل الحقل المغنطيسي لمغنطيس حدوة الحصان على أسلاك الملف الحاملة للتيار لإنتاج قوة في الملف. وهذه القوة تجعل الملف يدور. وتقاوم الزنبركات حركة الملف وتضبط بحيث يشير موقع الإبرة إلى الفولتية الصحيحة. وعند أخذ قراءة الفولتية، يوضع مقياس الفولت دائماً على جزء الدائرة المراد قياسه.
    توقيع : أحمد سعد الدين




    [FRAME="2 70"]( قل هذه سبيلى أدعوا إلى الله على بصيرة أنا ومن اتبعنى )

    رب توفنى مسلما وألحقنى بالصالحين

    أحمد سعد الدين[/FRAME]

  2. [52]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    التيار الكهربائي




    التَّيَّار الكهربائي حركة أوسريان الشحنات الكهربائية التي قد تكون موجبة أو سالبة. فشحنة البروتونات التي تكون جزءًا من نواة كل ذرة هي شحنة موجبة، بينما شحنة الإلكترونات التي تحيط بالنواة، سالبة. ويمكن أن يتكون التيار الكهربائي من شحنات موجبة أو سالبة أو من النوعين معًا.

    وضع العالم والسياسي الأمريكي بنجامين فرانكلين مبدأ سريان الكهرباء من الموجب إلى السالب. ولكن علماء آخرين أثبتوا فيما بعد أن الكهرباء تنساب في الاتجاه المعاكس من السالب إلى الموجب.

    وفشلت فكرة فرانكلين أيضًا في وصف الطريقة التي تسري بها الكهرباء خلال الفلزات، إذ تحتوي كل ذرة من سلك فلزي على إلكترون واحد على الأقل غير مرتبط ارتباطًِا وثيقًا بالنواة كارتباط غيره من الإلكترونات. وتستطيع هذه الإلكترونات ضعيفة الارتباط بالنويات التجول بحرية خلال الفلز، بينما لا تستطيع النواة ذاتها التحرك خلال السلك. وهكذا فإن التيار المار في سلك فلزي يتألف من إلكترونات حرة.




    الموصِّلات والعوازل. يسري التيار الكهربائي أسهل ما يمكن في مواد تسمى الموصلات. ويحدد عدد الإلكترونات الحرة في مادة ما مدى قدرتها على توصيل الكهرباء. فبعض الفلزات، كالألومنيوم، والنحاس، والفضة، والذهب، موصِّلات جيدة لأن لها على الأقل إلكترونًا واحدًا حرًا بكل ذرة من ذراتها. أما بعض الفلزات الأخرى كالرصاص والقصدير، فهي أقل قدرة على توصيل الكهرباء لأن عدد الإكترونات الحرة بها أقل من واحد لكل ذرة. وتقاوم الموصلات الرديئة مرور الكهرباء أكثر من الموصلات الجيدة، وتتسبب هذه المقاومة في استهلاك الطاقة الكهربائية على هيئة حرارة. ويستخدم المهندسون وحدة الأوم لقياس المقاومة




    والمواد التي لا تحتوي على إلكترونات حرة مثل، الزجاج والمطاط، لا توصل الكهرباء عادة. وتسمى هذه المواد العوازل، وبعض المواد كالسليكون والجرمانيوم لا تعتبر عازلة أو موصلة بل تسمى شبه موصلة
    ولكي يَنتج تيار كهربائي فلابد من تغيير نوع ما من أنواع الطاقة اللاكهربائية إلى قوة دافعة كهربائية. فالبطارية مثلاً تنتج قوة دافعة كهربائية بتغيير الطاقة الكيميائية إلى طاقة وضعية كهربائية. وبذلك يصبح للبطارية فرق جهد في الطاقة بين أطرافها يسبب سريان الإلكترونات في الموصِّل. وتُقاس القوة الدافعة الكهربائية بالفولت. وعندما توصل قوة دافعة كهربائية مقدارها فولت واحد إلى موصِّل مقاومته أوم واحد ينساب عدد من الإلكترونات مقداره6,241,500,000,000,000,000 إلكترون في الموصِّل خلال ثانية واحدة. وتسمى كمية الكهرباء المارة في هذه الثانية الأمبير.




    التيار المستمر والتيار المتناوب. ينقسم التيار الكهربائي إلى نوعين؛ فهو إما أن يكون مستمرًا أو متناوبًا وذلك حسب مصدره. يسري التيار المستمر في نفس الاتجاه دائمًا، وينتج من البطاريات ومولّدات التيار المستمر. ويقوم التيار المتناوب بعكس اتجاه سريانه بصورة نظامية، وينتج من مولدات التيار المتناوب ويُستخدم في معظم المنازل.

    وفي كل مرة يكمل فيها التيار المتناوب تغييرين في اتجاه سريانه فإنه يكون قد أتم دورة. ويُسمى عدد الدورات في كل ثانية بتردد التيار المتناوب. ويقاس التردد بوحدات تسمى هرتز. وتُوَلَّد الطاقة في كثير من الأقطار، عند تردد 50 هرتز وفي البعض الآخر عند تردد 60 هرتز.


    التيار المستمر. وهو يدير النظام الكهربائي للسيارات، والقاطرات وبعض أنواع المحركات في الصناعة. وتستخدم أجهزة المذياع والتلفاز وأجهزة إلكترونية أخرى التيار المتناوب، ولكنها تحتاج أيضًا إلى التيار المستمر لتشغيل دوائرها الداخلية. وتستطيع المقوِّمات تغيير التيار المتردد إلى تيار مستمر بسهولة.


    التيار المتناوب. وهو يتفوق على التيار المستمر بعدة مزايا منها سهولة وكفاءة نقله من محطات القوى. وتُفقد أقل كمية ممكنة من الطاقة الكهربائية عندما تُنقل عند فروق جهد مرتفعة. ولكن فروق الجهد المرتفعة تشكل خطرًا عند استخدامها في المنازل. وتستطيع أجهزة تسمى المحوِّلات تقليل أو زيادة فرق الجهد المتناوب بسهولة، بينما لا يمكن تغيير فرق الجهد المستمر بنفس السهولة والكفاءة.

  3. [53]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    المغنطيس الكهربائي




    المغنطيس الكهربائي مغنطيس مؤقت يتكون فقط عندما يمر تيار كهربائي خلال سلك أو موصل آخر. تتكون معظم المغانط الكهربائية من سلك ملفوف حول قلب حديدي. يُصنع هذا القلب من حديد خفيف المغنطة، أي يفقد المغنطة بسرعة حالما يتوقف سريان التيار المار في السلك. وتقوم المغانط الكهربائية بتشغيل أجراس الأبواب ومرحلات التيار وتنتج المجالات المغنطيسية اللازمة لتشغيل المحركات والمولدات الكهربائية. وتُستخدم المغانط القوية لرفع الأجزاء الثقيلة من المخلفات الحديدية. وهناك مغانط كهربائية مصممة خصيصًا لإنتاج مجالات مغنطيسية بالغة القوة، تُستخدم لتوجيه الجسيمات الذرية في مسارات محددة في معجلات الجسيمات.

    اكتشف العالم الفيزيائي الدنماركي هانز أورستد في عام 1820م، أن التيار الكهربائي يستطيع إنتاج مجال مغنطيسي. وأوضح الكهربائي الإنجليزي وِليم سترجون أن القلب المغنطيسي يقوي المجال المغنطيسي الناشئ عن ملف لولبي. وتمكن العالم الفيزيائي الأمريكي جوزيف هنري من عمل أول مغنطيس كهربائي عملي في أواخر العشرينات من القرن التاسع عشر.

  4. [54]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    الكهرومغنطيسية



    الكهرومغنطيسية فرع من فروع الفيزياء يدرس العلاقة بين الكهرباء والمغنطيسية. وتستند المغنطيسية الكهربائية إلى حقيقتين هما: 1ـ التيار الكهربائي ينتج مجالاً مغنطيسيًا 2ـ المجال المغنطيسي المتغير ينتج مجالاً كهربائيًا.

    في عام 1820م، اكتشف العالم الدنماركي هانز أورستد أن أي موصل يحمل تيارًا كهربائيًا يُحاط بمجال مغنطيسي. فعندما أحضر إبرة ممغنطة ووضعها بالقرب من سلك يمر به تيار كهربائي تحركت الإبرة، ونظرًا لأن الإبرة الممغنطة لاتتحرك إلا بتأثير قوة مغنطيسية فإن التجربة أوضحت أن التيار الكهربائي ينتج مجالاً مغنطيسيًا.

    أعلن العالم الفرنسي أندريه ماري أمبير في العشرينيات من القرن التاسع عشر الميلادي أن التيار الكهربائي هو المسؤول عن إنتاج كل المغنطيسية. واستنتج أن المغانط الدائمة تسري بداخلها تيارات ضئيلة. وقاد العمل الذي قام به كل من أورستد وأمبير إلى تطوير المغنطيس الكهربائي الذي يُستخدم في بعض الأجهزة، كالتلغراف، وجرس الباب. وتتكون معظم المغانط الكهربائية من سلك لولبي ملفوف حول قلب حديدي. ويتمغنط المغنطيس الكهربائي في نفس اللحظة التي يمر فيها تيار كهربائي خلال السلك. وإذا عكس اتجاه مرور التيار الكهربائي انعكست إشارة الأقطاب المغنطيسية المتكونة فيصبح الشمالي جنوبيًا والجنوبي شماليًا.

    تنتج المغنطيسية تيارًا كهربائيًا بوساطة الحث (التأثير) الكهرومغنطيسي. وقد اكتشف العالم الإنجليزي مايكل فارادي والعالم الفيزيائي الأمريكي جوزيف هنري، كل على حدة، الحث الكهرومغنطيسي عام 1831م. وفي الحث الكهرومغنطيسي يقوم أي مجال مغنطيسي متغير بإنتاج مجال كهربائي داخل موصل. فعلى سبيل المثال، تسبب حركة مغنطيس داخل لفيفة من السلك تغيُّر فرق الجهد من نقطة إلى أخرى على طول السلك. ويمر تيار في السلك طالما ظلت كمية المغنطيسية متغيرة. ويُعتبر الحث الكهرومغنطيسي أساس عمل المولد الكهربائي. أما في المحرك الكهربائي فتنعكس هذه العملية، إذ يقوم التيار المار خلال السلك بإنشاء مجال مغنطيسي يُسبب حركة السلك.

    وفي عام 1864م، استخدم جيمس كلارك ماكسويل التجارب السابقة ليُبين أن المجالين الكهربائي والمغنطيسي يعملان معًا على إنتاج طاقة إشعاعية في شكل موجات كهرومغنطيسية. وأثبت العالم الفيزيائي الألماني هينريتش هرتز، صحة ما توصل إليه ماكسويل عندما اكتشف الموجات الكهرومغنطيسية بعد عشرين سنة.

  5. [55]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    الأميتر





    الأميـتر آلة لقياس التيار الكهربائي الذي يمر في دائرة، بوحدات تُسمى الأمبير. وهناك نوعان أساسيان من الأميترات: القياسية والرقمية.

    تتألف معظم الأميترات القياسية المستخدمة بشكل واسع، من ملف ذي سلك دقيق ملفوف حول قلب حديدي طري. يُعلَّق هذا القضيب أو العمود بين قطبيْ مغنطيس دائم. وعندما يسري التيار في الملف يدور الملف والعمود معًا، بحيث يُصبِح المجال المغنطيسي للملف موازيًا لمجال المغنطيس الدائم. ويوجد مؤشر على العمود يتحرك على تدريج يشير إلى القراءة بالأمبير. ويجزِّيء مُفرِّع الأميتر (سلك ثقيل) معظم التيار حول المقياس. وباستخدام مفرعات مختلفة، يستطيع الأميتر أن يقيس مجالاً واسعًا من التيارات ـ من أجزاء الملايين القليلة للأمبير إلى الأمبيرات المتعددة على جهاز متعدد الأغراض.

    يعمل الأميتر ذو الملف المتحرك فقط على تيار مستمر، أي التيار الذي يسري دائما في الاتجاه نفسه. ويستطيع المقياس تحويل التيار المتناوب (منعكس باستمرار) إلى تيار مباشر بوساطة المقومات الموجودة فيه.

    لا يحتوي الأميتر الرقمي على أي أجزاء متحركة. وعندما يمر تيار من خلال المقياس فإنه يحول الجهد الكهربائي بين نقطتين إلى رمز رقمي ثم يعالج هذا الرمز إلِكترونيًا لحساب التيار.

  6. [56]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    الإشعاع



    الإشعاع. طاقة تطلق في شكل موجات، أو جسيمات صغيرة من مادة. يوجد الإشعاع في كل أنحاء الكون، وله أشكال عديدة. فالناس يعرفون بعض أنواع الإشعاع، مثل الأشعة السينية وأشعة جاما والإشعاع الصادر عن المفاعلات النووية. وتوصف هذه الأنواع عادة بأنها ضارة بالصحة، بالرغم من أن الأشعة السينية وأشعة جاما ذات استخدامات مفيدة في الطب. وبالإضافة إلى هذه الأشكال المعروفة من الإشعاع توجد أشكال أخرى كثيرة.

    وأكثر أنواع الإشعاع شيوعًا الضوء الذي نراه حولنا، مثل ضوء الشمس وضوء البرق وغيرها. ومن أشكال الإشعاع أيضًا الأشعة فوق البنفسجية الصادرة عن الشمس، والتي تسبب السفع وحرق الشمس. وبالإضافة إلى ذلك هناك أشكال أخرى كثيرة، مثل الحرارة المنبعثة عن النار، والإشارات الراديوية الحاملة للموسيقى، والضوء المكثف من الليزر، والموجات الدقيقة (المايكروويف) المستخدمة في الطبخ.

    يوجد الإشعاع حيثما كان هناك انتقال للطاقة من مكان إلى آخر. فالذرات والجزئيات تطلق الطاقة الزائدة في شكل إشعاع. وقد ينقل الإشعاع، عند اصطدامه بمادة ما، جزءًا من طاقته إلى المادة، وتكون هذه الطاقة عادة في شكل حرارة ترفع درجة حرارة المادة. ومعظم أنواع الإشعاع، باستثناء الضوء، غير مرئية.

    وهناك نوعان أساسيان من الإشعاع، حيث يتكون أحد النوعين، والذي يسمى الإشعاع الكهروضوئي من طاقة على هيئة موجات، بينما يتكون النوع الآخر، أي الإشعاع الجسيمي، من حبيبات دقيقة من المادة.

    وتوجد عدة مصادر للإشعاع الكهروضوئي. فكل المواد التي تُعرَّض للتسخين تصبح مصادر لمثل هذا النوع من الإشعاع. وتنتج الشمس إشعاعًا كهرومغنطيسيًا من التفاعلات النووية التي تحدث في مركزها، وتسخن هذه الطاقة الطبقة الخارجية من الشمس، مما يؤدي إلى توهج الغازات الساخنة، منتجة الضوء وغيره من أنواع الإشعاع. وينتقل هذا الإشعاع الشمسي عبر الفضاء إلى الأرض وغيره من الكواكب.

    ويأتي الإشعاع الجسيمي من المواد النشطة إشعاعيًا، التي يوجد بعضها في الطبيعة، ومنها، على سبيل المثال، الراديوم واليورانيوم وغيرهما من العناصر الثقيلة التي توجد في الصخور والتربة. وبالإضافة إلى ذلك يستطيع العلماء تحضير أشكال العناصر النشطة إشعاعيًا في المعمل بقذف العنصر بالجسيمات تحت الذرية، أي الحبيبات الدقيقة من المادة التي تكوِّن الذرات.

    وتعتمد كل أشكال الحياة على الأرض على الإشعاع، ولكن بعض أنواع الإشعاع قد تكون خطرة إذا لم يتم التعامل معها بحذر. فالأشعة السينية، على سبيل المثال، تساعد الأطباء على تحديد الأمراض الدفينة وتشخيصها، ولكنها قد تؤدي إلى تدمير الخلايا الحية، مما يؤدي بدوره إلى إصابتها بالسرطان أو موتها. ويمكِّن ضوء الشمس النباتات من النمو، وتدفئ الأرض، ولكنه يسبب أيضًا حرق الشمس وسرطان الجلد. وتستخدم أشعة جاما لعلاج الأمراض بقتل الخلايا السرطانية، ولكنها قد تسبب أيضًا تشوهات الولادة. وتنتج محطات القدرة النووية الطاقة الكهربائية، ولكنها تنتج أيضًا نفايات مشعة قد تؤدي إلى موت الكائنات الحية.



    استخدامات الإشعاع


    التصوير المقطعي الإشعاعي يستخدم لفحص الفولاذ عند إنتاجه. يعطي الجهاز سمك الفولاذ بقياس مقدار الإشعاع الذي يخترقه.

    محطة إعادة إرسال الموجات الدقيقة تبعث الرسائل بوساطة موجات الراديو مما يسمح باتصال فوري بين موقعين.

    ماسح يعطي صور أشعة سينية لأعضاء الجسم وهي تؤدي وظائفها. هذا الفني يفحص قلب مريض، وهو يخفق، على جهاز العرض الماسح.
    في الطب. يستخدم الإشعاع ـ وكذلك المواد المشعة ـ في التشخيص والعلاج والبحوث. فالأشعة السينية، على سبيل المثال، يمكنها اختراق العضلات والإنسجة اللينة الأخرى، ولكن المواد الصلبة توقفها. وتمكن هذه الخاصية الأطباء من التعرف على العظام المكسورة، وتحديد السرطانات التي ربما تكون آخذة في النمو داخل الجسم. ويتعرف الأطباء على بعض الأمراض أيضًا بحقن مادة مشعة، ومراقبة الإشعاع المنطلق أثناء حركة المادة داخل الجسم.


    في الاتصالات. تستخدم كل نظم الاتصالات الحديثة الإشعاع الكهرومغنطيسي، حيث تمثل اختلافات شدة الإشعاع التغيرات في الصوت أو الصورة أو الأشكال الأخرى المنقولة. فعلى سبيل المثال، يمكن إرسال الصوت البشري في شكل موجة راديوية أو موجة دقيقة بجعل الموجة تتغير حسب اختلافات طبقة الصوت.


    في العلوم. يستخدم الباحثون الذرات النشطة إشعاعيًا لتحديد أعمار المواد التي كانت يومًا ما جزءًا من كائنات حية، حيث يمكن تقدير أعمار مثل هذه المواد بقياس كمية الكربون المشع في المادة، بالعملية المسماة التأريخ بالكربون المشع. ويستخدم علماء البيئة ذرات نشطة إشعاعيًا تسمى الذرات الاستشفافية، للتعرف على المسارات التي تتخذها الملوثات في البيئة.

    ويستخدم الإشعاع لتحديد تركيب المواد، بعملية تسمى التحليل بالتنشيط النيوتروني. وفي هذه العملية يقذف العلماء عينة من المادة بجسيمات تسمى النيوترونات، حيث تمتص بعض الذرات هذه النيوترونات وتصبح نشطة إشعاعيًا. وبإمكان العلماء التعرف على العناصر المكونة للعينة بدراسة الإشعاع الناتج.


    في الصناعة. للإشعاع عدة استخدامات في الصناعة. فمصنعو الأغذية، على سبيل المثال، يضيفون جرعات قليلة من الإشعاع لقتل البكتيريا في بعض الأغذية، وبالتالي حفظ المادة الغذائية. ويستخدم الإشعاع في صنع البلاستيك لأنه يسبب ترابط الجزئيات وتصلبها، كما يستخدم أيضًا للكشف عن الشقوق في المواد المصنعة، بالعملية المسماة التصوير الإشعاعي الصناعي.

    وتحصل وحدات القدرة النووية على الطاقة من الانشطار النووي، أي انقسام نواة الذرة إلى نواتي ذرتين خفيفتين حيث تنطلق عن الانشطار كمية كبيرة من الإشعاع، بما في ذلك الأشعة تحت الحمراء التي تستخدم في تحويل الماء إلى بخار، والذي يستخدم بدوره في إدارة العنفة (التوربين) المنتجة للطاقة الكهربائية.

    وتحدث العملية المضاءة، أي الاندماج النووي، عندما تتحد نواتا عنصرين خفيفين، لتكوين نواة عنصر أثقل. وتنطلق عند الاندماج أيضًا كمية كبيرة من الإشعاع، مثل الحرارة والضوء الصادرين عن الشمس وغيرها من النجوم، والقوة الانفجارية للقنبلة الهيدروجينية. ويحاول العلماء التوصل إلى طرق استخدام الاندماج النووي في إنتاج الطاقة الكهربائية. انظر: الطاقة النووية (نبائط الاندماج التجريبية).


    في العمليات العسكرية. تستخدم الموجات الراديوية في النظم الرادوية، لتحديد أماكن الطائرات والسفن، كما يستخدم الضوء الصادر عن الليزرات في الاتصالات وفي توجيه الصواريخ إلى أهدافها. وتعتمد النبائط الحساسة للحرارة، في الكشف الليلي، على الأشعة تحت الحمراء الصادرة عن الأجسام الحية.



    الإشعاع والنشاط الإشعاعي
    يفرق العلماء بين الإشعاع والنشاط الإشعاعي، الذي يمثل إحدى خواص بعض أنواع المواد، ويسبب انطلاق أشكال معينة من الإشعاع من المادة، نتيجة تغيرات في نوى الذرات المكونة للمادة.

    ولفهم الفرق بين الإشعاع والنشاط الإشعاعي لابد من فهم تركيب الذرة وكيفية تغيرها. فالذرة تتكون من جسيمات دقيقة، ذات شحنة كهربائية سالبة، تسمى الإلكترونات، تحيط بنواة ثقيلة موجبة الشحنة. والشحنات المتضادة يجذب بعضها بعضًا، بينما تتنافر (تتباعد) الشحنات المتشابهة، وعليه فإن النواة الموجبة الشحنة تجذب إليها الإلكترونات، وتبقيها داخل الذرة.

    وتتكون نوى كل الذرات، باستثناء أكثر أشكال الهيدروجين شيوعًا، من جسيمات تسمى البروتونات والنيوترونات (تتكون نواة الهيدرجين العادي من بروتون واحد فقط). وتحمل البروتونات شحنات موجبة، بينما لاتحمل النيوترونات أي شحنات. فأكثر أشكال الهيليوم شيوعًا، على سبيل المثال، يحتوي على بروتونين ونيوترونين في النواة، وإلكترونين خارج النواة. وتتكون البروتونات والنيوترونات من جسيمات أصغر تسمى الكواركات.
    وفي داخل النواة تتنافر البروتونات الموجبة الشحنة لأنها تحمل شحنات متشابهة. وتبقى البروتونات والنيوترونات معًا في النواة لأن قوة عنيفة، تسمى القوة النووية العنيفة أو التفاعل القوي، تمسك بها.

    وتستطيع الذرة تغيير عدد البروتونات والنيوترونات في النواة بإطلاق جسيمات ذرية أو دفعات من الطاقة، أو أخذ هذه الجسيمات أو الدفعات ـ أي بإطلاق أو أخذ الإشعاع. ولكن أي تغيير في عدد البروتونات في النواة يؤدي إلى إنتاج ذرة عنصر آخر، ولذلك تطلق الذرات النشطة إشعاعيًا الإشعاع تلقائيًا للوصول إلى وضع أكثر استقرارًا. وتسمى عملية إطلاق الذرات للجسيمات الانحلال الإشعاعي. وعندما ينحل العنصر النشط إشعاعيًا يتغير إلى شكل آخر من نفس العنصر، أو إلى عنصر آخر، حتى يستقر نهائيًا ويصبح غير نشط إشعاعيًا.

    ويحدث الانحلال الإشعاعي بمعدلات مختلفة في العناصر المختلفة أو الأشكال المختلفة من نفس العنصر. ويقاس معدل الانحلال بالعمر النصفي، أي الفترة الزمنية التي يحتاجها نصف عدد الذرات في العينة لينحل. فالعمر النصفي للسيزيوم 137 مثلاً، وهو أحد أشكال السيزيوم النشطة إشعاعيًا، يبلغ حوالي 30 عامًا. ويعني ذلك أن حوالي ربع كمية السيزيوم 137 الأصلية سيتبقى بعد حوالي 60 عامًا. وبعد 30 عامًا أخرى سيتبقى حوالي ثمن الكمية فقط، وهكذا. ويبلغ العمر النصفي للرادون 222 حوالي 3,8 أيام. وتتراوح الأعمار النصفية بين أجزاء من الثانية وبلايين الأعوام.

  7. [57]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    الإشعاع الكهرومغنطيسي
    يتكون الإشعاع الكهرومغنطيسي من الطاقة الكهربائية والمغنطيسية. فكل جسم مشحون كهربائيًا محاط بمجال كهربائي، وهو المنطقة التي تؤثر فيها لاقوة الكهربائية للجسم. وكل جسم مغنطيسي محاط أيضًا بمنطقة مشابهة تسمى المجال المغنطيسي. ويولد التيار الكهربائي، أو المجال الكهربائي المتغير، مجالاً مغنطيسيًا، كما يولد المجال المغنطيسي المتغير مجالاً كهربائيًا. ويعمل المجالان الكهربائي والمغنطيسي معًا لإنتاج الإشعاع الكهرومغنطيسي.

    ويتحرك الإشعاع الكهرومغنطيسي عبر الفراغ في شكل موجات، ولكنه ذو خصائص جسيمية أيضًا. وتطلق الذرات الإشعاع الكهرومغنطيسي في شكل حزمة دقيقة من الطاقة تسمى الفوتون. ومثل الجسيم، يشغل الفوتون مساحة محددة من الفراغ، ولكنه، مثل الموجات، ذو تردد وطول موجي يمكن قياسهما. والتردد هو عدد المرات التي تمر فيها الموجة في الثانية الواحدة عبر دورة واحدة. أما الطول الموجي فهو المسافة التي تقطعها لموجة في الزمن الذي تستغرقه للمرور عبر دورة واحدة. وتتفاوت طاقة فوتون للإشعاع الكهرومغنطيسي حسب التردد والطول الموجي، حيث ترتفع بارتفاع تردد الإشعاع وقصر طوله الموجي، وتنخفض بانخفاض التردد وطول الطول الموجي.

    وفي الفراغ تنتقل كل أنواع الإشعاع الكهرومغنطيسي بسرعة الضوء، أي 299,792 كيلومترًا في الثانية، ولكن الأنواع المختلفة من الإشعاع تختلف في التردد والطول الموجي، وتصنف حسب ترتيب يسمى الطيف الكهرومغنطيسي. والأنواع المختلفة للإشعاع الكهرومغنطيسي حسب ازدياد الطول الموجي هي: أشعة جاما والأشعة السينية والأشعةفوق البنفسجية والضوء المرئي والأشعة تحت الحمراء والموجات الدقيقة والموجات الراديوية. وأعلى هذه الأنواع من حيث الطاقة هما أشعة جاما والأشعة السينية. أما الموجات الراديوية، في الطرف الآخر من الطيف، فهي أقلها طاقة.



    الإشعاع الجسيمي

    جسيمات ألفا. تتكون من بروتين ونيوترونين تعمل كلها جسيمًا واحدًا. وعندما تبث نواة ذرة مشعة جسيم ألفا تفقد بروتونين ونيوترونين. أشعة جاما. جسيمات من طاقة كهرومغنطيسية تسمى الفوتونات. تُطلق أشعة جاما عندما تكون النواة في حالة طاقة عالية بعد الانحلال الإشعاعي. وتنتقل أشعة جاما بسرعة الضوء.

    جسيمات بيتا. إلكترونات عالية السرعة تُطلق من نوي بعض العناصر المشعة. وقد تكون جسيممات بيتا سالبة أو موجبة.
    يتكون الإشعاع الجسيمي من البروتونات والنيوترونات والإلكترونات، وهي الجسيمات الدقيقة التي تمثل الكتل البنائية للذرة. ولكل نوع من أنواع الإشعاع الجسيمي كتلة وطاقة، ومعظمها تنتقل بسرعات عالية، ولكنها أقل من سرعة الضوء. وهناك نوع من أنواع الجسيمات يسمى النيوترينو، ذو كتلة غير قابلة للقياس، وينتقل بسرعة تعادل سرعة الضوء، أو أقل بقليل.

    وقد اكتشف العلماء أن البروتونات والنيوترونات والإلكترونات، التي نعتقد أنها جسيمات، تسلك أيضًا سلوك الموجات. فهذه الموجات، التي تسمى موجات المادة ذات طول موجي، وكلما ازدادت سرعة الجسم قل طوله الموجي. ويعني هذا أن الإشعاع الجسيمي، مثل الإشعاع الكهرومغنطيسي، يجمع بين خواص كل من الجسيمات والموجات. وهناك أربعة أنواع شائعة من الإشعاع الجسيمي هي: 1- جسيمات ألفا 2- جسيمات بيتا 3- الفوتونات 4- النيوترونات.


    جسيمات ألفا. يتكون جسيم ألفا من بروتونين وإلكترونين، ويشبه نواة ذرة الهيليوم. وهو يحمل شحنة كهربائية موجبة، وتساوي كتلته كتلة 7300 إلكترون. وتنطلق جسيمات ألفا عن نوى بعض الذرات النشطة إشعاعيًا، وتصبح معظمها في النهاية مكونة من إلكترونين فقط متحولة إلى ذرات هيليوم.


    جسيمات بيتا. هذه الجسيمات إلكترونات، وتنتج معظمها عندما تتعرض ذرة نشطة إشعاعيًا إلى تحول نووي. وفي العملية يتغير نيوترون في نواة الذرة إلى بروتون وينطلق جسيم بيتا.

    ومعظم جسيمات بيتا سالبة الشحنة، ولكن بعضها موجبة الشحنة، وتسمى البوزيترونات، حيث ينتج البوزيترون عندما يتحول بروتون إلى نيوترون. والبوزيترونات أحد أشكال المادة المضادة، وهي مادة تشبه المادة العادية، غير أن شحنتها معكوسة. وعندما يصطدم البوزيترون بإلكترون سالب الشحنة يدمر كل من الجسيمين الجسيم الآخر، وينتج عن ذلك فوتونان أو ثلاثة فوتونات من أشعة جاما.

    ويصاحب إشعاع بيتا جسيمان صغيران آخران هما النيوترينو والنيوترينو المضاد. فعندما تنتج النواة بوزيترونًا، تطلق أيضًا جسيم نيوترينو، والذي لا يحمل أي شحنة، وكتلته غير محددة، وعندما تولد النواة جسيم بيتا سالب الشحنة وتطلقها، تطلق معه أيضًا جسيم نيوترينو مضاد، وهو الشكل المضاد للنيوترينو.
    البروتونات والنيوترونات. يمكن إطلاقها أيضًا من بعض النوى النشطة إشعاعيًا. وتبلغ كتلة كل من البروتون أو النيوترون كتلة 1850 إلكترونًا تقريبًا، ولكن كتلة النيوترون أكبر قليلاً من كتلة البروتون. والإشعاع النيوتروني أكثر شيوعًا من الإشعاع البروتوني، الذي ينتج في الطبيعة نادرًا.



    مصادر الإشعاع
    تشمل مصادر الإشعاع الطبيعية الشمس وغيرها من النجوم والعناصر الطبيعية النشطة إشعاعيًا. وهناك أيضًا مصادر صناعية أخرى للإشعاع.



    الاندماج النووي
    الشمس والنجوم الأخرى. تطلق الشمس والنجوم الأخرى كلاً من الإشعاع الكهرومغنطيسي والإشعاع الجسيمي. وينتج هذا الإشعاع عن اندماج نوى الهيدروجين في النجمة، حيث يؤدي هذا الاندماج إلى تحول الهيدروجين إلى هيليوم مطلقًا كمية كبيرة من الطاقة، ومنتجًا إشعاعًا كهرومغنطيسيًا يشمل كل أنواع الطيف الكهرومغنطيسي. فبجانب الضوء المرئي تنتج النجمة كل أنواع الإشعاع، ابتداء من الموجات الضوئية وانتهاء بإشعاع جاما ذي الطاقة العالية. وينتج إشعاع جاما عن تكون العناصر الجديدة في الأعماق البعيدة من لب النجمة، ولايصل إلى الأرض مباشرة.

    تنتج النجوم أيضًا جسيمات ألفا وبيتا والبروتونات والنيوترونات وغيرها من أنواع الإشعاع. وتسمى الجسيمات عالية الطاقة، التي تنتجها النجوم، الأشعة الكونية. وحتى الشمس تطلق ومضات قصيرة تسمى الوهج الشمسي، تغطي الأرض بأشعة كونية قوية قد تتداخل مع الاتصالات.



    الانحلال الإشعاعي تعرَّف سلسلة الانحلال الإشعاعي بأنها العملية التي تطلق بها ذرة مشعة الإشعاع، ومن ثم تتغير إلى أشكال مختلفة من نفس العنصر أو إلى عناصر أخرى. فسلسلة اليورانيوم مثلاً تبدأ باليورانيوم 238، والذي يتغير بفقدان جسيم ألفا، إلى التوريوم 2.
    المواد الطبيعية النشطة إشعاعيًا. تنتمي معظم المواد الطبيعية النشطة إشعاعيًا إلى ثلاث سلاسل تغيرات تسمى سلاسل الانحلال الإشعاعي، وهي : 1- سلسلة اليورانيوم 2- سلسلة الثوريوم 3- سلسلة الأكتينيوم. وفي كل من هذه السلاسل تنحل نظائر (أشكال العنصر التي تحتوي على أعداد مختلفة من النيوترونات) ثقيلة إلى نظائر متنوعة أخف، بإطلاق الإشعاع، حتى تصل إلى حالة الاستقرار.

    تبدأ سلسلة اليورانيوم باليورانيوم 238، وهو أثقل نظائر اليورانيوم، ويحتوي على 92 بروتونًا و146 نيوترونًا. وبعد أن يفقد اليورانيوم 238 جسيم ألفا، والذي يحتوي على بروتونين ونيوترونين، تصبح نواة الذرة محتوية على 90 بروتونًا و144 نيوترونًا، وبذلك يتحول اليورانيوم 238 إلى أحد نظائر الثوريوم المشعة ويسمي العلماء هذه العملية التي يتحول بها العنصر إلى عنصر آخر التحول النووي. ويتفكك الثوريوم بدوره بعدة خطوات إلى الراديوم 226، الذي ينحل إلى الرادون، وهو غاز مشع يوجد طبيعيًا. وقد يشكل الرادون خطرًا صحيًا إذا ازدادت كميته في مبنى معين، وخاصة المباني السيئة التهوية. وتستمر السلسلة حتى يتحول النظير إلى شكل مستقر من الرصاص.

    وتبدأ سلسلة الثوريوم بالثوريوم 232، وهو أحد نظائر الثوريوم، بينما تبدأ سلسلة الأكتينيوم باليورانيوم 235، وهو أحد نظير آخر لليورانيوم. وينتهي كل من هاتين السلسلتين أيضًا بالرصاص.

    وتشتمل مجموعة رابعة من العناصر الطبيعية النشطة إشعاعيًا على عدد كبير من المواد التي لا تنتمي إلى سلاسل الانحلال الإشعاعي. وينتج عدد من هذه العناصر، بما في ذلك الكربون 14 والبوتاسيوم 40 والساماريوم 146، عن الإشعاع الكوني الذي ينفذ خلال الغلاف الجوي الأرضي. ويوجد الكربون 14 والبوتاسيوم 40 في جسم الإنسان أيضًا.



    الانشطار النووي
    المواد الصناعية النشطة إشعاعيًا. هذه المواد يصنعها الإنسان بعمليات مثل الانشطار الذي يحدث في الأسلحة النووية والمفاعلات النووية أو في المعامل. فعندما تنقسم النواة بالانشطار تنطلق عدة أنواع من الإشعاع، مثل النيوترونات وإشعاع جاما وجسيمات بيتا. وينتج الانشطار أيضًا ذرات مشعة جديدة تسمى المنتجات الانشطارية، مثل المنتج الانشطاري السيزيوم 137، وهو نظير مشع للسيزيوم غطى الأرض في خمسينيات وستينيات القرن العشرين ناتجًا عن اختبارات القنابل النووية. ويحتوي الوقود المستهلك في محطات القدرة النووية، مثل البلوتونيوم 239 والسترونتيوم 90 والباريوم 140، أيضًا على منتجات انشطارية عديدة. ويظل هذا الوقود المستهلك، الذي يطلق عليه اسم النفايات النووية، نشطًا إشعاعيًا لسنوات عديدة، ويمثل ذلك خطورة كبيرة على الحياة.

    وبالإضافة إلى ذلك، تولد المحطات النووية عناصر مشعة جديدة تسمى منتجات التنشيط، التي تتكون عندما تمتص الأنابيب وغيرها من المواد المكونة للمفاعل النووي النيوترونات وغيرها من أنواع الإشعاع، متحولة بذلك إلى مادة مشعة.

    وينتج النشاط البشري أنواعًا أخرى عديدة من الإشعاع. فالفيزيائيون مثلاً، يستخدمون نبائط قوية تسمى معجلات الجسيمات لتسريع حركة الجسيمات المشحونة كهربائيًا مثل الإلكترونات والبروتونات والنوى الكاملة، ثم يقذفون الذرات المستقرة، غير المشعة، بحزم من هذه الجسيمات العالية الشحنة، حيث تنتج عن التصادمات ذرات مشعة جديدة، ويساعد ذلك العلماء على فهم تركيب الذرات وخصائصها.

  8. [58]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    أسباب الإشعاع
    تنحصر الإلكترونات داخل الذرة في مناطق تسمى مدارات الإلكترونات، تحيط بالنواة حسب طاقاتها، حيث تتحرك الإلكترونات ذات الطاقة الأقل في المدارات الداخلية، بينما تتحرك الإلكترونات ذات الطاقة الأعلى في المدارات الخارجية. وتنتظم البروتونات والنيوترونات في النواة أيضًا حسب مستويات طاقاتها في طبقات تسمى المدارات النووية. ولكل البروتونات والإلكترونات والنيوترونات التي تشغل مدارًا معينًا نفس كمية الطاقة تقريبًا.

    وكما يبحث الماء دائمًا عن أدنى مستوى ممكن تبحث الإلكترونات أيضًا عن أدنى مستويات الطاقة. وعندما يتحول الإلكترون من مدار خارجي إلى مدار أقرب إلى النواة، يطلق حزمة من الطاقة تسمى الفوتون، والتي تهرب من الذرة. وتساوي طاقة الفوتون الفرق في طاقة الإلكترون عندما يقفز من المدار الأصلي إلى مدار جديد. وإذا كان الفرق في الطاقة صغيرًا تطلق الذرة الضوء المرئي أو الأشعة تحت الحمراء أو كليهما، ولكنها قد تنتج الأشعة السينية إذا كان الفرق كبيرًا.

    وعندما يتحرك البروتون أو النيوترون من مدار نووي إلى آخر تطلق النواة إشعاع جاما. وتنتج معظم الذرات التي تطلق الإشعاع الجسيمي أثناء الانحلال الإشعاعي إشعاع جاما أيضًا، لأن بروتوناتها ونيوتروناتها تتحرك إلى مدارات جديدة. وينتج الإشعاع الصادر عن التفاعلات النووية أيضًا من البروتونات والنيوترونات والإلكترونات المتحركة إلى مدارات جديدة. ففي الانشطار النووي، على سبيل المثال، تتحرك الجسيمات إلى مدارات نوى جديدة، تتكون عندما تنشطر النواة إلى نواتين صغيرتين.

    وينتج الإشعاع الكهرومغنطيسي أيضًا عندما يغير جسيم مشحون كهربائيًا اتجاهه أو سرعته أو كليهما. فالجسيم الذي يدخل مجالاً كهربائيًا أو مغنطيسيًا، على سبيل المثال، تنخفض سرعته ويتغير اتجاهه، ونتيجة لذلك يطلق الجسيم إشعاعًا. وتنتج الأشعة السينية حيثما كان هناك انخفاض مفاجئ في سرعة الإلكترونات، مثلما يحدث عند اصطدام الإلكترونات بالذرات الفلزية، لتوليد الأشعة السينية في ماكينة الأشعة السينية. وتنتج الإلكترونات الأشعة السينية أيضا عندما تمر قرب نواة كبيرة، حيث تنجذب الإلكترونات السالبة الشحنة نحو النواة الموجبة الشحنة، منتجة الأشعة السينية عندما تغير اتجاهاتها. وتسمى الأشعة السينية المنتجة بهذه الطريقة الإشعاع الكاسر.



    تأثيرات الإشعاع

    التأثيرات القاتلة نتيجة التعرض لإشعاع جاما على مدى طويل يمكن أن تلاحظ في صورة الغابة أعلاه. وفي تجربة علمية، عُرَِّضت الأشجار التي تقع في المركز لأشعة جاما لنحو ستة شهور.
    ينتج الإشعاع تأثيرين رئيسيين في الذرات والجزئيات 1- الإثارة 2- التأيين. وفي الإثارة تمتص الذرة (أو الجزيئ) الطاقة من الإشعاع، وتتحرك إلكتروناتها إلى مستويات الطاقة الأعلى. وفي معظم الحالات تستطيع الذرة المثارة الإمساك بالطاقة الزائدة لجزء من الثانية فقط، قبل أن تطلق الطاقة في شكل فوتون وتعود مرة أخرى إلى مستوى الطاقة الأدنى. وفي التأيين ينقل الإشعاع طاقة كافية إلى الإلكترونات في الذرة، تمكنها من ترك الذرة والانتقال في الفضاء. وتتحول الذرات التي تفقد إلكترونات إلى جسيمات موجبة الشحنة تسمى الأيونات الموجبة. أما الإلكترونات المفقودة فقد تنتقل إلى ذرات أخرى.

    تؤثر الإثارة والتأيين على الأنسجة الحية أيضًا. فخلايا الجسم تحتوي على جزئيات تترابط الكثير منها معا بإلكترونات. وقد تتفكك هذه الروابط الكيميائية، ويتغير شكل الجزيء، عندما يثير الإشعاع جزئيات الخلايا أو يؤينها، ويؤدي مثل هذا التغيير إلى تعطل العمليات الكيميائية العادية للخلايا، وتصبح الخلايا شاذة، أو تموت.

    وعندما يؤثر الإشعاع على جزيئات د ن أ (الحمض النووي الريبي منقوص الأكسجين)، أي المادة الوراثية في الخلايا الحية، تسبب أحيانًا تغيرًا دائمًا يسمى الطفرة. وفي بعض الحالات النادرة قد تنقل الطفرات الناتجة عن الإشعاع خصائص غير مرغوبة إلى الجيل الجديد. وحتى الفوتونات المنخفضة الطاقة، وخاصة الأشعة فوق البنفسجية من الشمس، قد تسبب تدميرًا عن طريق الإثارة. وإذا كان تدمير المادة الوراثية للكائن الحي كبيرًا، تصبح الخلفية سرطانية، أو تموت أثناء محاولتها الانقسام. ويتوقف التأثير الناتج على القدرة التأيينية للإشعاع والجرعة المأخوذة ونوع النسيج المتأثر.


    القدرة التأيينية. يمكن تصنيف الإشعاع إلى إشعاع مؤيِّن وإشعاع غير مؤيِّن. والإشعاع المؤين هو أشد أنواع الإشعاع خطرًا، وبعضها ذات طاقة تكفي لنزع الإلكترونات مباشرة من الذرات التي تعترض طريقها. ومن أمثلة هذا النوع من الإشعاع جسيمات ألفا وبيتا والبروتونات. وبعض أنواع الإشعاع، بما في ذلك الأشعة السينية وإشعاع جاما والإشعاع النيوتروني، لابد أن تنقل الطاقة أولاً إلى الذرة، حيث تسبب الطاقة المضافة فقدان الذرة لإلكترون.

    ويتكون الإشعاع غير المؤين من فوتونات ذات طاقة منخفضة جدًا، لا تمكنها من إحداث الإثارة، ومن أنواعه الموجات الراديوية والموجات الدقيقة والإشعاع تحت الأحمر والضود المرئي، حيث يسبب كل منها الإثارة فقط.



    أثناء العمل قرب الإشعاع يضع الفني مقياس الجرعة الإشعاعية على قبعته. يقيس هذا الجهاز كمية الإشعاع التي يتعرض لها الفني أثناء تأدية عمله في مفاعل لإنتاج الطاقة النووية.
    الجرعة. يستخدم العلماء نظامين لقياس كمية أو جرعة الإشعاع التي تمتصها المادة. ففي النظام القديم، الذي ما يزال شائع الاستخدام، تقاس الجرعات بوحدة تسمى الراد، وهو اختصار لعبارة إنجليزية تعني : الجرعة الإشعاعية الممتصة. ويعرف الراد بأنه الجرعة التي يمتصها كيلوجرام واحد من المادة عندما يمتص 0,001 جول من الطاقة الإشعاعية



    أما في النظام الجديد، المستخدم منذ عام 1975م، فيقاس الإشعاع بوحدة تسمى الجراي، والتي سميت على اسم عالم الأحياء الإنجليزي لويس جراي. ويساوي الجراي 100 راد أو 1 جول لكل كيلوجرام من المادة.

    وتنتج الجرعات المتساوية من الأنواع المختلفة من الإشعاع تأثيرات مختلفة، ولذلك طور العلماء ما يعرف باسم العامل النوعي، والذي يحدد حجم التدمير الذي يسببه الإشعاع في النسيج الحي مقارنًا بجرعة مساوية من الأشعة السينية. فالجرعة الواحدة من جسيمات ألفا، على سبيل المثال، يسبب حوالي عشرة أضعاف حجم التدمير الذي تسببه نفس الجرعة من الأشعة السينية، ولذا يقال إن لجسيمات ألفا عاملاً نوعيًا قدره 10. وللأشعة السينية وإشعاع جاما وجسيمات بيتا عامل نوعي قدره 1، بينما يتراوح العامل النوعي للنيوترونات بين 2 و11.

    ويعطي حاصل ضرب الجرعة في العامل النوعي مقياسًا للتدمير يسمى مكافئ الجرعة. وعند احتساب الجرعة بالراد، يحتسب مكافئ الجرعة بوحدة تسمى الرم، وهو اختصار لعبارة إنجليزية تعني : مكافئ رونتجن في الإنسان، ويُعرَّف بأنه كمية الإشعاع التي تُحدث في الإنسان نفس التأثير الذي يحدثه راد واحد من الأشعة السينية. وفي حالة احتساب الجرعة بالجراي يحتسب مكافئ الجرعة بوحدة تسمى السيفرت، والتي سميت على اسم عالم الإشعاع السويدي رولف سيفرت.

    الجرعات الكبيرة. تسبب مجموعة من التأثيرات تسمى مرض الإشعاع. وتدمر الجرعات التي تزيد عن 100 رم خلايا الدم البيضاء والحمراء، ويسمى هذا التدمير تأثير تكون الدم. وقد تؤدي الجرعات الزائدة عن 300 رم إلى الموت خلال بضعة أسابيع. وتسبب الجرعات الزائدة عن 100 رم موت الخلايا المبطنة للقناة الهضمية وانتقال بكتيريا الأمعاء إلى مجرى الدم، وقد يؤدي هذا التأثير، الذي يسمى التأثير المعوي المعدي، إلى الموت خلال أسبوع. أما الجرعات الزائدة عن 1000 رم فتسبب جرح الدماغ، وقد تؤدي إلى الموت خلال ساعات.

    والوفيات الناجمة عن مرض الإشعاع قليلة جدًا، ولم يحدث أن عانى الناس من مثل هذه الجرعات الكبيرة إلا في حالات حوادث المفاعلات، وفي حالات قليلة عوملت فيها المواد المشعة بإهمال، وعندما ألقيت القنبلتان النوويتان في هيروشيما وناجازاكي باليابان في الحرب العالمية الثانية، عام 1945م. وحدثت أسوأ حوادث المفاعلات عام 1986م، عندما انفجرت محطة تشيرنوبل للقدرة النووية في أوكرانيا، والتي كانت جزءًا من الاتحاد السوفييتي آنذاك، حيث توفي 31 عاملاً.

    الجرعات الصغيرة. الجرعات التي نستقبلها يوميًا، والتي تسمى أحيانًا جرعات الخلفية قليلة جدًا، حيث يقدر العلماء متوسط جرعة الخلفية بما يترواح بين حوالي 0,3 و0,4 رم سنويًا. ويأتي نصف هذه الكمية من استنشاق غاز الرادون، الذي ينطلق من الصخور المشعة والتربة، بينما يأتي حوالي 0,04 رم من الأشعة السينية المستخدمة في الطب، وحوالي 0,01 من مصادر أخرى مثل محطات القدرة النووية وأماكن النفايات. ويصاب المدخنون بجرعات أكبر من النظائر المشعة الموجودة في الدخان.

    ويزيد تراكم الجرعات الصغيرة من الإشعاع احتمال الإصابة ببعض الحالات، ولكن ليس حدة الحالات. وأهم الحالات الناتجة عن الجرعات الصغيرة المتكررة من الإشعاع هي السرطان وتشوهات الولادة.

    ولحماية الناس من تأثيرات الإشعاع تضع الهيئة الدولية للحماية الإشعاعية، والتي تضم خبراء من دول عديدة، توجيهات لتأمين سلامة المعرضين للإشعاع. وتوصي الهيئة العاملين في المجال النووي بألا يتجاوز التعرض الجرعة القوصى المسموح بها، وهي 5 رم كل عام، كما توصي الجمهور أيضًا بألا تزيد الجرعة السنوية المأخوذة عن 0,5 رم في أي عام. وتضع وكالات أخرى موجهات مماثلة، ومن هذه الوكالات: المنظمة الأسترالية للعلوم النووية والتقنية، ومركز بهابها للبحوث الذرية بالهند، ومجلس السلامة النووية بجنوب إفريقيا، والهيئة القومية للحماية الإشعاعية بإنجلترا.



    نبذة تاريخية


    النظريات والاكتشافات المبكرة. درس العلماء الإشعاع منذ القدم. ففي القرنين الثالث والرابع قبل الميلاد كتب الفيلسوف الإغريقي أبيقور عن جسيمات "تنبعث" من سطوح الأجسام. واعتقد إقليدس، وهو رياضي إغريقي عاش في نفس تلك الفترة، أن العين ترسل إشعاعًا يمكنها من رؤية الأجسام.

    واعتقد روبرت جروستست، وهو عالم وأسقف إنجليزي عاش في القرن الثالث عشر الميلادي، أن الضوء هو أصل كل أنواع المعرفة، وأن فهم القوانين التي تحكم الضوء سوف يكشف الغطاء عن كل قوانين الطبيعة.

    ودار حوار حول تركيب الضوء في القرن السابع عشر بين أتباع العالم الإنجليزي السير إسحق نيوتن والفيزيائي الهولندي كريستيان هايجنز، حيث أصر نيوتن على أن الضوء يتكون من جسيمات دقيقة، بينما أشار هايجنز إلى أنه يتكون من موجات. وقد اختلف العلماء حول هاتين النظريتين لفترة امتدت إلى أكثر من مائة عام. وفي أوائل القرن التاسع عشر أوضح الفيزيائي البريطاني توماس يونج أن الضوء ذو خصائص شبيهة بخصائص موجات الصوت والماء. وبعد ذلك بسنوات قليلة أعطى الفيزيائي الفرنسي أوغسطين فرسنل أدلة جديدة على ذلك. وبحلول خمسينيات القرن التاسع عشر كان معظم العلماء قد قبلوا نتائج كل من هايجنز وفرسنل حول الطبيعة الموجية للضوء.

    وفي عام 1864 اقترح الفيزيائي البريطاني جيمس كلارك ماكسويل أن الضوء يتكون من موجات كهرومغنطيسية، كما تنبأ باحتمال اكتشاف أشكال أخرى غير مرئية من الإشعاع الكهرومغنطيسي. وقد تأكدت هذه التنبؤات بعمل اثنين من العلماء الألمان هما هينريتش هرتز وويلهلم رونتجن، حيث اكتشف هرتز الموجات الراديوية في أواخر ثمانينيات القرن التاسع عشر، بينما اكتشف رونتجن الأشعة السينية في عام 1895.

  9. [59]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    اكتشاف النشاط الإشعاعي. في عام 1896، اكتشف الفيزيائي الفرنسي أنطوان هنري بكويريل أن بلورات بعض مركبات اليورانيوم يمكن أن تظلل الألواح الفوتوغرافية، حتى في حالة عدم تعرضها للضوء، وافترض أن اليورانيوم يطلق طاقة في شكل إشعاع. وأوضحت تجارب لاحقة أجراها الفيزيائي البريطاني إرنست رذرفورد أن هذا الإشعاع يتكون من جسيمات سماها جسيمات ألفا وبيتا.

    وفي عام 1898، اكتشف الفيزيائيان الفرنسيان ماري وبيير كوري مادتين أخريين ينتجان الإشعاع، أطلقا عليهما اسمي البلوتونيوم والراديوم. وبعد ذلك بسنوات قليلة أوضح رذرفورد أن المواد المشعة يمكن أن تتغير إلى عناصر جديدة بعملية التحول النووي.

    وقد أثار عمل كل من رذرفورد وبيير وماري كوري اهتمامًا واسعًا بتركيب الذرة، حيث استطاع رذرفورد وزملاؤه وغيرهم من العلماء إثبات أن الذرة تتكون من نواة ذات كتلة عالية وشحنة كهربائية موجبة، تحيط بها إلكترونات سالبة الشحنة.


    نظرية الكم. في عام 1900، درس الفيزيائي الألماني ماكس بلانك الإشعاع المنبعث من الأجسام الساخنة، وأوضح أن الأجسام تبث وتمتص هذا الإشعاع في شكل حزم من الطاقة سماها الكمات، والتي تغيرت فيما بعد إلى الفوتونات. وفي عام 1905 استخدم الفيزيائي الألماني ألبرت أينشتاين نظرية بلانك لتوضيح ظاهرة تسمى التأثير الكهروضوئي. وكان العلماء السابقون قد اكتشفوا هذا التأثير، الذي ينتج عنه انطلاق إلكترونات من الفلز عند سقوط حزمة ضوئية مضيئة عليه. وقد افترض أينشتاين أن الطاقة التي يعطيها فوتون واحد يمكن أن تحرر إلكترونًا من ذرة فلز. ولإنتاج التأثير الكهروضوئي تعمل الفوتونات بطريقة موضعية أقرب إلى خصائص الجسيمات منها إلى خصائص الموجات. وهكذا أحيت أفكار أينشتين النظرية الجسيمية للضوء، حيث يعرف العلماء اليوم أن الإشعاع يجمع بين خصائص الجسيمات وخصائص الضوء. ويمكن ملاحظة كلا نوعي الخصائص عند إجراء تجارب مختلفة، ولكن ذلك غير ممكن في التجربة الواحدة. فإذا أعد العلماء اختبارًا لتتبع التأثير الكهروضوئي تسلك الفوتونات سلوك الجسيمات المفردة، ولكن عند إمرار حزمة من الجسيمات عبر فتحة صغيرة تسلك الفوتونات سلوك الموجات الكهرومغنطيسية المتصلة.

    وفي عام 1913 استخدم الفيزيائي الدنماركي نيلز بور نظرية الكم لتوضيح تركيب ذرة الهيدروجين، وأوضح أن الإلكترونات ذات طاقات معينة، وأن الذرات تطلق فوتونات من الإشعاع عندما تسقط الإلكترونات من مدار طاقة عالية إلى مدار أقل طاقة. وفي عام 1924 تنبأ الفيزيائي الفرنسي لويس دي بروجلي أن الإلكترونات نفسها تعمل في شكل موجات تسمى موجات المادة.



    العصر النووي. بدأ العصر النووي في عام 1942 عندما أنتج الفيزيائي الإيطالي المولد إنريكو فيرمي والعاملون معه في الولايات المتحدة أول تفاعل سلسلي نووي صناعي. ومنذ ذلك التاريخ، وجه الكثيرون من العلماء انتباههم نحو إيجاد استخدامات للنشاط الإشعاعي والإشعاع، وانتجوا الأسلحة النووية المبنية على الانشطار ـ مثل القنبلة الذرية ـ والاندماج ـ مثل القنبلة الهيدروجينية. وقد بدأت أول محطة قدرة نووية مكتملة العمل في عام 1956. ومنذ ذلك التاريخ دخل استخدام كل أشكال الطيف الكهرومغنطيسي في الاتصالات والطب والصناعة والبحوث.

    وفي ستينيات وسبعينيات القرن العشرين نما مجال فيزياء الصحة بسرعة. وفيزياء الصحة هو المجال العلمي الذي يعنى بحماية الناس من مخاطر الإشعاع، ويدرس أيضًا تسخير استخدامات الإشعاع لصالح الإنسان.

    فمنذ سبعينيات القرن العشرين أشارت عدة دراسات إلى أن التعرض المتكرر لجرعات صغيرة من الإشعاع المؤيِّن يمكن أن يسبب متاعب صحية خطيرة. ونتيجة لذلك يطالب الكثيرون بأن يحاط إنتاج واستخدام الإشعاع ذي الطاقة العالية بضوابط صارمة. ويجري العلماء مزيدًا من الدراسات لتحديد تأثيرات المستويات المنخفضة من الإشعاع على الناس والبيئة.

  10. [60]


    الحالة: أحمد سعد الدين غير متصل
    تاريخ التسجيل: 04-03-2006
    الدولة: القاهرة
    المشاركات: 4,717
    التقييم: 10
    القوة:
    الدفع النفاث




    الدّفع النفّاث يستخدم في إنتاج الحركة في اتجاه ما بواسطة تيار من الغازات تندفع بضغط عال في الجهة المضادة للحركة. وتعتمد الصواريخ والقذائف الموجهة وكثير من الطائرات على الدفع النفاث لتزويدها بالقدرة اللازمة لحركتها.

    ويمكن للطائرة التي تسير بالدفع النفاث (الطائرة النفاثة) أن تصل إلى سرعات تفوق سرعة الطائرة التي تسير بدفع المراوح. كما يمكن لبعض الطائرات النفاثة عند طيرانها في الهواء أن تصل إلى سرعات تزيد على سرعة انتقال الصوت في الهواء. وبوساطة الدفع النفاث صار من الممكن الطيران في أقصى الارتفاعات وكذلك الوصول إلى الفضاء الخارجي.

    ولا يصدر عن المحركات النفاثة نفس الاهتزازات التي تحدثها المحركات المكبسية التي تستخدم في إدارة مراوح بعض الطائرات. ونتيجة هذا الانتظام والهدوء في عملها فإن استخدامها يحقق الأمان في ركوبها. وبوجه عام فإن المحركات النفاثة تعد أصغر وأقل وزنا من المحركات المكبسية التي تعطي نفس القدر من قوة الدفع ¸القوة التي تدفع الطائرة إلى الأمام·، إلا أن استهلاك المحركات النفاثة من الوقود يزيد عن استهلاك المحركات المكبسية التي تعطي أيضًا نفس القدر من قوة الدفع.

    ومن المحتمل أن يكون أول محرك نفاث تم إنشاؤه هو تلك الآلة الصغيرة التي تحاكي لعب الأطفال والتي صنعها هيرو الإسكندري عام 60م. كما استخدم الصينيون الصواريخ في عتادهم الحربي خلال القرن الثالث عشر. وقد تم تحليق أول طائرة يدفعها محرك نفاث في ألمانيا عام 1939م. ومنذ ذلك الحين صارت المحركات النفاثة مصدرًا للتزويد بالقدرة للطائرات من جميع الأنواع، بما فيها الطائرات الأسرع من الصوت والتي تستخدمها خطوط الطيران العالمية، وكذلك سفن الفضاء التي تطير إلى الكواكب الأخرى.



    كيف يعمل الدفع النفاث


    كيف يعمل المحرك النفاث يدخل الهواء إلى المحرك فينضغط ثم يتم خلطه بالوقود ويحترق، ثم تندفع غازات الاحتراق في اتجاه مؤخرة المحرك، وما تحدثه الغازات أثناء اندفاعها وخروجها من المحرك هو فعل يقابله رد فعل يدفع المحرك في الاتجاه المضاد.
    المبدأ الأساسي للدفع النفاث يمكن توضيحه من خلال تجربة بخرطوم المياه المستخدم في ري الحدائق. فعند توصيله بمصدر مياه مع غلق فوهة الخرطوم عند نهايتها، يؤدي ارتداد الماء إلى الخلف نتيجة غلق الفوهة إلى دفع الماء على السطح الداخلي للخرطوم في كل الاتجاهات. ويؤدي ذلك إلى الدفع عكس اتجاه المياه في الخرطوم في محاولة للضغط على الفوهة. وعند فتح الفوهة فإن هذا الضغط سيدفع بالماء إلى الخارج، مما يؤدي إلى فقدان اتزان الضغط داخل الفوهة. ويؤدي هذا إلى خفض الضغط الذي يدفع للأمام في منطقة الفوهة، بينما يستمر الماء في الضغط على الخلف والجوانب. وإذا ما تركت الفوهة تتحرك كيف تشاء فإن عدم اتزان الضغط داخل وخارج الفوهة، وكذلك اندفاع الماء منها، سيدفع بالفوهة إلى الخلف، وستتحرك الفوهة عكس اتجاه اندفاع الماء منها.


    اختبار المحرك النفاث يتطلب غرفًا مجهزة وإعدادًا خاصًا. محرك توربيني تضاغطي مثبت أثناء تشغيله فوق منصة اختبارات لقياس قوة الدفع (القوة التي تدفع بالمحرك للأمام ) التي ينتجها المحرك.
    وقد وضع العالم الإنجليزي السير إسحق نيوتن المبدأ الأساسي للمحركات النفاثة في عام 1687م من خلال القانون الثالث للحركة. وينص هذا القانون على أن لكل فعل رد فعل مساوياً له في المقدار ومضاداً له في الاتجاه. وفي المثال السابق فإن الفعل يمثله اندفاع الماء من فوهة الخرطوم ورد الفعل هو القوة التي دفعت الخرطوم في الاتجاه المضاد. ويعتمد الدفع النفاث على نفس المبدأ في تغذية محركات الطائرات، حيث يتم رفع ضغط الهواء داخل المحرك. ويدفع هذا الضغط تيارًا من غازات الاحتراق بسرعة كبيرة من مؤخرة المحرك، ويمثل هذا التيار المندفع من غازات العادم الفعل. ويؤدي هذا الفعل إلى حدوث رد فعل مساو له في المقدار ومضاد له في الاتجاه يتمثل في قوة تدفع المحرك إلى الأمام



    تستخدم الصواريخ والمحركات النفاثة نفس المبدأ الأساسي للدفع النفاث، إلا أنهما تختلفان في مصدر الأكسجين اللازم لاحتراق الوقود في كل منهما. ففي حين تستخدم المحركات النفاثة أكسجين الهواء الجوي لحرق وقودها، فإن الصواريخ تحمل بداخلها الأكسجين اللازم لاحتراق الوقود بها. ولهذا فإنه يمكن للصواريخ أن تنطلق إلى الفضاء الخارجي الذي لا يحتوي على هواء جوي، بينما تعجز المحركات النفاثة عن الطيران خارج هذا الغلاف الجوي



    قدرة المحركات النفاثة. تتولد هذه القدرة من قوة دفع النفاث، أي من دفع الغازات التي ينتجها احتراق الوقود في الهواء داخل غرفة الاحتراق والتي تنطلق من خلال فوهة المحرك فتعطيه قوة الاندفاع إلى الأمام. ويدخل الهواء إلى المحرك النفاث من خلال فتحة دخول في مقدمة المحرك ثم يتم ضغطه حتى يصل إلى ما بين 3 و 30 ضعف ضغط الهواء الجوي. ثم يندفع جزء من هذا الهواء إلى داخل غرفة الاحتراق حيث يتم خلطه بالوقود واحتراقه فيه. وتستخدم معظم المحركات النفاثة مستخلصات النفط السائلة المشابهة للكيروسين كوقود لها. ويصاحب اشتعال الوقود في الهواء المضغوط خروج كمٍ كبيرٍ من الطاقة التي تؤدي إلى ارتفاع درجة حرارة الغازات الناتجة عن هذا الاشتعال إلى 1,800 - 2,000 درجة مئوية. ويمكن أن تؤدي هذه الدرجة المرتفعة إلى تدمير أجزاء المحرك، إلا أن خلط هذه الغازات مع باقي الهواء المضغوط يؤدي إلى خفض هذه الدرجة إلى الحدود المناسبة، كما يقوم جزء آخر من الهواء بتبريد جدران غرفة الاحتراق. وتتجه هذه الغازات إلى نهاية المحرك حيث تنطلق من فوهته بأقصى سرعة فتنتج الدفع المطلوب.

    يتضح من هذا أن إنتاج الدفع في المحركات النفاثة يعتمد على زيادة سرعة كمية من الغازات داخل المحرك، ولكن هناك كمية كبيرة من الطاقة الحرارية في غازات العادم لا يتم استغلالها. ويفقد المحرك هذه الطاقة نتيجة خروج تلك الغازات من فوهة المحرك بدرجة حرارة عالية. أما إنتاج الدفع بوساطة المراوح، فيعتمد على حركة كمية كبيرة من الهواء بسرعة قليلة، ولا يدع مجالا لفقد كمية كبيرة من الطاقة في الهواء. وبهذا فإن استخدام المراوح يقلل من كمية الطاقة المفقودة ويحقق كفاءة أعلى في إنتاج قوة الدفع.

    وبالنظر إلى قوة الدفع التي نحصل عليها من المحركات النفاثة فسنجد أن لها قيمة ثابتة تقريبا مهما تغيرت سرعة الطيران. أما قدرة الدفع الناتجة من المراوح فإنها تتعرض لهبوط حاد عند زيادة سرعة الطيران، وعليه فإن الطائرات التي تسير بالدفع النفاث تفوق في سرعتها الطائرات المروحية.

    ويتم قياس قوة دفع المحركات النفاثة في غرفة قياس ذات تجهيز خاص يسمح بضبط الظروف المحيطة بالمحركات بحيث تحاكي خصائص الهواء في طبقات الجو العليا التي يطير إليها المحرك، كما يندفع الهواء في هذه الغرفة إلى المحرك بطريقة مماثلة لما يحدث أثناء الطيران عند سرعات وارتفاعات مختلفة، وتقاس قوة دفع المحرك بوحدة الرطل أو النيوتن، وكمثال فإن المحركات الأربعة النفاثة التي تعمل في الطائرة البوينج 747 ينتج كل منها قوة دفع قدرها 51,600 رطل (230,000 نيوتن).



    أنوع المحركات النفاثة
    تقسم المحركات النفاثة إلى أربعة أنواع أساسية: 1- محرك توربيني نفاث، 2- محرك توربيني مروحي، 3- محرك توربيني تضاغطي مروحي، 4- محرك نفاث تضاغطي. ووجه الاختلاف بين المحركات السابقة يعتمد على مدى إسهام الدفع النفاث؛ أي دفع تيار الغازات المنطلقة من فوهة المحرك بالنسبة للدفع الكلي للمحرك. ففي المحرك التوربيني المروحي تنشأ معظم قوة الدفع من دفع مروحي، ولا تمثل قوة الدفع النفاث أيضًا النصيب الأكبر من الدفع الكلي للمحرك التوربيني التضاغطي المروحي. وهناك أيضا أوجه أخرى للاختلاف بين تلك المحركات مثل طريقة زيادة ضغط الهواء بداخل كل منها.



    التوربين النفاث. يعد أول أنواع المحركات التي استخدمت في تغذية الطائرات النفاثة بالقدرة على الطيران، ولاتختلف الأنواع الأخرى من المحركات النفاثة عن التوربين النفاث إلا في بعض الإضافات.

    وفي هذا المحرك يتم اندفاع الهواء من خلال أنبوب إدخال ليصل إلى الضاغط. وقد أصبحت وظيفة أنبوب الإدخال أكثر تعقيدًا بعد أن زادت سرعة المحركات النفاثة في بعض الطائرات الأخرى عن سرعة الصوت، حيث تؤدي هذه الزيادة في السرعة إلى انتشار موجات تصادمية في الهواء عند دخوله المحرك. وتحد هذه الموجات التصادمية ـ بشكل كبير ـ من سريان الهواء إلى الضاغط. ويمكن للتوربين النفاث تقليل تأثير هذه الموجات بالتعديل المستمر للشكل الداخلي لأنبوب الإدخال.

    ويقوم الضاغط برفع ضغط الهواء داخل المحرك، وتتشابه ضواغط المحركات التوربينية في هيكلها مع التوربينات (كمعدة دوارة). وهناك نوعان من الضواغط يمكن أن يزود بأحدهما المحرك النفاث، حيث يختلف اتجاه سريان الهواء في كل منهما، فإما أن يكون ضاغطًا محوري السريان أو ضاغطًا مركزي السريان.

    ويتكون الضاغط المحوري السريان من عدة عجلات دوارة، يثبت في كل منها مجموعة من الرِّيَش الصغيرة التي تأخذ شكل الأجنحة كما في حالة المروحة الكهربائية. وهذه العجلات مرتبة على التوالي بعضها خلف بعض على امتداد عمود الضاغط الذي يدور بسرعة كبيرة حول محوره. وبين كل عجلتين متواليتين دوارتين توضع مجموعة ثابتة من الريش مثبتة في الجسم الخارجي للضاغط. وعند سريان الهواء في اتجاه يوازي محور الضاغط، ينحصر الهواء بين ريش العجلات الدوارة والريش الثابتة فيرتفع ضغطه. ويمكن أن يرتفع ضغط الهواء الخارج من بعض الضواغط المحورية إلى حوالي 30 ضعف ضغط الهواء الداخل إليها.

    ويكبس ضاغط السريان المركزي الهواء في اتجاه مركز عجلة سريعة الدوران، ثم يدفع الهواء في اتجاه الطوق الخارجي للضاغط. ولا يسمح تصميم الضاغط المركزي بوجود عدة صفوف أو مراحل متتالية من العجلات كما هو الحال في الضغط المحوري. ولهذا فإن أقصى ارتفاع في ضغط الهواء يمكن أن يحدثه هذا الضاغط هو ستة أضعاف الهواء الخارجي.

    وبعد خروج الهواء من الضاغط يتجه إلى غرفة الاحتراق حيث يختلط جزء منه، تتراوح نسبته بين 25 و40 في المائة من الهواء الكلي، مع الوقود الذي يحقن ويحرق فيه. وباحتراق الوقود تزداد درجة الحرارة وضغط الغازات الناتجة من الاحتراق. وباختلاط هذه الغازات مع باقي الهواء القادم من الضاغط تنخفض درجة حرارتها بدرجة معقولة. وباندفاع تلك الغازات الساخنة إلى التوربين فإنها تدفع عجلات ريش التوربين إلى الدوران، فتنتج القدرة المطلوبة بحيث تدفع الضاغط الأمامي إلى الدوران معها.

    ثم تتجه غازات الاحتراق بعد دفعها للتوربين إلى فوهة المحرك. وبهذا فإن الهدف من الأجزاء المختلفة للمحرك النفاث هو رفع طاقة الغازات عند فوهة المحرك لتحقق عند انطلاقها قوة الدفع المطلوبة. وتصل سرعة الغازات عند خروجها من فوهه توربين نفاث إلى 1,600 كم في الساعة. وفي التوربينات المصممة لسرعة أقل من سرعة الصوت تضيق مساحة الفوهة تدريجيًا حتى فتحة الانطلاق. أما بالنسبه للفوهات المصممة لسرعات أكبر من سرعة الصوت فإن فوهتها تضيق ثم تتسع مرة أخرى حيث يساعد اتساع الفوهة مرة أخرى على زيادة سرعة الغازات عن سرعة الصوت عند خروجها.

    تستخدم بعض التوربينات النفاثة نبائط إضافية تسمى الحارقات اللاحقة لزيادة قوة دفع المحرك في فترات زمنية قصيرة. وتوضع الحارقات اللاحقة بين التوربين وفوهة خروج الغازات. ولأن هذه الغازات تحتوي على نسبة عالية من الأكسجين، فإن هذا يتيح استغلالها في حرق كمية إضافية من الوقود في الحارقة اللاحقة مما يرفع كثيرا درجة الحرارة. وهذا يمثل إضافة طاقة أخرى إلى تلك الغازات، فتعمل على تحقيق زيادة في السرعة تحقق للمحرك قدرًا كبيرًا من قوة الدفع. ولكن استخدام الحارقة اللاحقة يؤدي إلى زيادة كبيرة في استهلاك الوقود، ولهذا يقصر استخدامها على فترات زمنية قصيرة، حيث يمكن استخدامها في الصعود السريع أو الرأسي أو أثناء القيام بالمناورات.

    تستخدم الطائرات العسكرية المحركات النفاثة لإمدادها العاجل بالقدرة اللازمة لها. فالطائرة الأمريكية النفاثة (نورثروب اف ـ5 إي) تستخدم محركين من النوع التوربيني النفاث ذي الحارقة اللاحقة حيث ينتج كل منهما قوة دفع تعادل 15,600 نيوتن أو(3,500 رطل). وعند استخدام الحارقة اللاحقة تصل قوة دفع كل محرك إلى 22,200 نيوتن أو (5,000 رطل). وهناك بعض طائرات الركاب الصغيرة التي تستخدم أيضًا التوربين النفاث.

صفحة 6 من 13 الأولىالأولى ... 45678 ... الأخيرةالأخيرة

الكلمات الدلالية لهذا الموضوع

ضوابط المشاركة

  • لا تستطيع إضافة مواضيع جديدة
  • لا تستطيع الرد على المواضيع
  • لا تستطيع إرفاق ملفات
  • لا تستطيع تعديل مشاركاتك
  •  


نادى محبى الحيوانات الاليفة

  • اكبر تجمع فى الوطن العربى متخصص فى تربية الحيوانات الاليفة والتعرف على الحياة البرية فى جميع مجالتها - كما اننا نضم اكبر مجموعة محترفين فى هذه الهوايات والتى نقوم بدعمها بصورة لائقة للوطن العربى.

تابعونا على

Twitter Facebook youtube Flickr RSS Feed